Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface
A. Patterson, K. Young, M.P. Biever, S.M. Klein, S.-Y. Huang, P.A. DePhillips, S.C. Jacobson, M.F. Jarrold, and A. Zlotnick.
Virology, 600, 110211, 2024, https://doi.org/10.1016/j.virol.2024.110211.
Complementary Nanoparticle Characterization by Resistive-Pulse Sensing, Electron Microscopy, and Charge Detection Mass Spectrometry
L.M. Miller, T.W. Young, Y. Wang, B.E. Draper, X. Ye, S.C. Jacobson, and M.F. Jarrold.
Analytical Chemistry, 96, 14239–14247, 2024, https://doi.org/10.1021/acs.analchem.4c02901.
Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles
B.L. Pope, M. Zhang, S. Jo, B. Dragnea, S.C. Jacobson.
Analytical Chemistry, 96, 11845–11852, 2024, https://doi.org/10.1021/acs.analchem.4c01521.
Integrated In-Plane Nanofluidic Devices for Resistive-Pulse Sensing
T.W. Young, M.P. Kappler, E.D. Call, Q.J. Brown, S.C. Jacobson.
Annual Review of Analytical Chemistry, 17, 221-42, 2024, https://doi.org/10.1146/annurev-anchem-061622-030223.
Modular Anti-Counterfeit Tags Formed by Template-Assisted Self-Assembly of Plasmonic Nanocrystals and Authenticated by Machine Learning
M. Ibrar, S.-Y. Huang, Z. McCurtain, S. Naha, , D.J. Crandall, S.C. Jacobson, and S.E. Skrabalak.
Advanced Functional Materials, 34, 2400842, 2024, https://doi.org/10.1002/adfm.202400842.
Characterization of Extracellular Vesicles by Resistive-Pulse Sensing on In-Plane Multipore Nanofluidic Devices
T.W. Young, M.P. Kappler, N.M. Hockaden, R.L. Carpenter, S.C. Jacobson.
Analytical Chemistry, 95, 16710–16716, 2023, https://doi.org/10.1021/acs.analchem.3c03546.
Mechanistic Insights into Electrocatalytic Carbon−Bromine Bond Cleavage in Polybrominated Phenols
E.C.R. McKenzie, S. Hosseini, M. Tanwar, M. Neurock, S. D. Minteer, and S. C. Jacobson
The Journal of Physical Chemistry C, 127, 17335-17344, 2023, https://doi.org/10.1021/acs.jpcc.3c01506.
The Precision Toxicology Initiative
J.K. Colbourne, E. Andrews, M. Barnard, et al.
Toxicology Letters, 383, 33–42, 2023, https://doi.org/10.1016/j.toxlet.2023.05.004.
Mapping Complex Profiles of Light Intensity with Interferometric Lithography
J.B. Holmes, M. Zhang, T. Greibe, W.L. Schaich, S.C. Jacobson, and B. Dragnea.
Nanoscale Advances, 5, 2045–2053, 2023, https://doi.org/10.1039/d2na00570k.
Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation
C.A. Starr, S. Nair, S.-Y. Huang, M.F. Hagan, S.C. Jacobson, A. Zlotnick.
Journal of the American Chemical Society, 145, 2322–2331, 2023, https://doi.org/10.1021/jacs.2c10937.
Fractionation and Characterization of Sialyl Linkage Isomers of Serum N-Glycans by CE-MS
X. Zhou, W. Song, M.V. Novotny, and S.C. Jacobson
Journal of Separation Science, 45, 3348–3361, 2022, https://doi.org/10.1002/jssc.202200223.
In-Plane, In-Series Nanopores with Circular Cross-Sections for Resistive-Pulse Sensing
M. Zhang, Z.D. Harms, T. Greibe, C.A. Starr, A. Zlotnick, and S.C. Jacobson
ACS Nano, 16, 7352–7360, 2022, https://doi.org/10.1021/acsnano.1c08680.
Nitric Oxide Stimulates Type IV MSHA Pilus Retraction in Vibrio cholerae via Activation of the Phosphodiesterase CdpA
H.Q. Hughes, K.A. Floyd, S. Hossain, S. Anantharaman, D.T. Kysela, Y. Yu, M.P. Kappler, T.N. Dalia, R.C. Podicheti, D.B. Rusch, Y.V. Brun, S.C. Jacobson, J.B. McKinlay, F.H. Yildiz, E.M. Boon, and A.B. Dalia
Proceedings of the National Academy of Sciences, U.S.A., 119, e2108349119, 2022, https://doi.org/10.1073/pnas.2108349119.
Disassembly of Single Virus Capsids Monitored in Real Time with Multi-Cycle Resistive-Pulse Sensing
J. Zhou, A. Zlotnick, and S.C. Jacobson
Analytical Chemistry, 94, 985–992, 2022, https://doi.org/10.1021/acs.analchem.1c03855.
The Division Defect of a Bacillus subtilis minD noc Double Mutant Can Be Suppressed by Spx-dependent and Spx-independent Mechanisms.
Y. Yu, F. Dempwolff, R.T. Oshiro, F.J. Gueiros-Filho, S.C. Jacobson, and D.B. Kearns
Journal of Bacteriology, 203, e00249-2, 2021, https://doi.org/10.1128/JB.00249-21.
Arsenic Exposure Induces a Bimodal Toxicity Response in Zebrafish
J.A. Coral, S. Heaps, S.P. Glaholt, J.A. Karty, S.C. Jacobson, J.R. Shaw, and M. Bondesson
Environmental Pollution, 287, 117637, 2021, https://doi.org/10.1016/j.envpol.2021.117637.
Noc Corrals Migration of FtsZ Protofilaments during Cytokinesis in Bacillus subtilis.
Y. Yu, J. Zhou, F. Gueiros-Filho, D.B. Kearns, and S.C. Jacobson
mBio, 12, e02964-20, 2021, https://doi.org/10.1128/mBio.02964-20.
Asymmetrizing an Icosahedral Virus Capsid by Hierarchical Assembly of Subunits with Designed Asymmetry
Z. Zhao, J. C.-Y. Wang, M. Zhang, N.A. Lyktey, M.F. Jarrold, S.C. Jacobson, and A. Zlotnick
Nature Communications, 12, 589, 2021, https://doi.org/10.1038/s41467-020-20862-1.
Glycoproteomic Analysis of Human Urinary Exosomes
C.J. Brown, S. Gaunitz, Z. Wang, L. Strindelius, S.C. Jacobson, D.E. Clemmer, J.C. Trinidad, and M.V. Novotny.
Analytical Chemistry, 92, 14357–14365, 2020, https://doi.org/10.1021/acs.analchem.0c01952.
Exosome-Mediated Crosstalk Between Keratinocytes and Macrophages in Cutaneous Wound Healing
X. Zhou, B.A. Brown, A. Siegel, M.S. El Masry, X. Zeng, W. Song, A. Das, P. Khandelwal, A. Clark, K. Singh, P.R. Guda, M. Gorain, L. Timsina, Y. Xuan, S.C. Jacobson, M.V. Novotny, S. Roy, M. Agarwal, R.J. Lee, C.K. Sen, D.E. Clemmer, and S. Ghatak
ACS Nano, 14, 12732–12748, 2020, https://doi.org/10.1021/acsnano.0c03064.
Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis
Y. Yu, J. Zhou, F. Dempwolff, J.D. Baker, D.B. Kearns, and S.C. Jacobson
mBio, 11, e03197-19, 2020, https://doi.org/10.1128/mBio.03197-19.
In-Depth Compositional and Structural Characterization of N-Glycans Derived from Human Urinary Exosomes
W. Song, X. Zhou, J.D. Benktander, S. Gaunitz, G. Zou, Z. Wang, M.V. Novotny, and S.C. Jacobson
Analytical Chemistry, 91, 13528–13537, 2019, https://doi.org/10.1021/acs.analchem.9b02620.
Evolution of Late-Stage Intermediates during Capsid Assembly of Hepatitis B Virus with Phenylpropenamide-based Antivirals
P. Kondylis, C.J. Schlicksup, S.P. Katen, L.S. Lee, A. Zlotnick, and S.C. Jacobson
ACS Infectious Diseases, 769–777, 2019, https://dx.doi.org/10.1021/acsinfecdis.8b00290.
Competition between Normative and Drug-Induced Virus Self-Assembly Observed with Single-Particle Methods
P. Kondylis, C.J. Schlicksup, N.E. Brunk, J. Zhou, A. Zlotnick, and S.C. Jacobson
Journal of the American Chemical Society, 141, 1251–1260, 2019, https://dx.doi.org/10.1021/jacs.8b10131.
Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids
P. Kondylis, C.J. Schlicksup, A. Zlotnick, and S.C. Jacobson
Analytical Chemistry, 91, 622–636, 2019, https://dx.doi.org/10.1021/acs.analchem.8b04824.
Characterization of Virus Capsids and Their Assembly Intermediates by Multi-Cycle Resistive-Pulse Sensing with Four Pores in Series
J. Zhou, P. Kondylis, D.G. Haywood, Z.D. Harms, L.S. Lee, A. Zlotnick, and S.C. Jacobson
Analytical Chemistry, 90, 7267–7274, 2018, https://dx.doi.org/10.1021/acs.analchem.8b00452.
Capillary Electrophoresis–Mass Spectrometry for Direct Structural Identification of Serum N-Glycans.
C.M. Snyder, X. Zhou, J.A. Karty, B.R. Fonslow, M.V. Novotny, and S.C. Jacobson
Journal of Chromatography A, 1523, 127–139, 2017, https://doi.org/10.1016/j.chroma.2017.09.009.
A Molecular Breadboard: Removal and Replacement of Subunits in a Hepatitis B Virus Capsid
L.S. Lee, N. Brunk, D.G. Haywood, D. Keifer, E. Pierson, P. Kondylis, J. C.-Y. Wang, S.C. Jacobson, M.F. Jarrold, and A. Zlotnick
Protein Science, 26, 2170–2180, 2017, http://dx.doi.org/10.1002/pro.3265.
Single Particle Observation of SV40 VP1 Polyanion-induced Assembly Shows That Substrate Size and Structure Modulate Capsid Geometry
C. Li, A.R. Kneller, S.C. Jacobson, and A. Zlotnick
ACS Chemical Biology, 12, 1327–1334, 2017, http://dx.doi.org/10.1021/acschembio.6b01066.
Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly
P. Kondylis, J. Zhou, Z.D. Harms, A.R. Kneller, L.S. Lee, A. Zlotnick, and S.C. Jacobson
Analytical Chemistry, 89, 4855–4862, 2017, http://dx.doi.org/10.1021/acs.analchem.6b04491.
Complementary Glycomic Analyses of Sera Derived from Colorectal Cancer Patients by MALDI-TOF-MS and Microchip Electrophoresis
C.M. Snyder, W.R. Alley, Jr., M.I. Campos, M. Svoboda, J.A. Goetz, J.A. Vasseur, S.C. Jacobson, and M.V. Novotny
Analytical Chemistry, 88, 9597–9605, 2016, http://dx.doi.org/10.1021/acs.analchem.6b02310.
Structural Characterization of Serum N-Glycans by Methylamidation, Fluorescent Labeling, and Analysis by Microchip Electrophoresis
I. Mitra, C.M. Snyder, X. Zhou, M.I. Campos, W.R. Alley, Jr., M.V. Novotny, and S.C. Jacobson
Analytical Chemistry, 88, 8965–8971, 2016, http://dx.doi.org/10.1021/acs.analchem.6b00882.
Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array to Track Development of Individual Bacteria
J.D. Baker, D.T. Kysela, J. Zhou, S.M. Madren, A.S. Wilkens, Y.V. Brun, and S.C. Jacobson.
Analytical Chemistry, 88, 8476–8483, 2016, http://dx.doi.org/10.1021/acs.analchem.6b00889.
AC Electroosmotic Pumping in Nanofluidic Funnels
A.R. Kneller, D.G. Haywood, and S.C. Jacobson
Analytical Chemistry, 88, 6390–6394, 2016, http://dx.doi.org/10.1021/acs.analchem.6b00839.
Short-stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-like Cell Cycle
M. Williams, M.D. Hoffman, J.J. Daniel, S.M. Madren, A. Dhroso, D. Korkin, S.A. Givan, S.C. Jacobson, and P.J.B. Brown
Journal of Bacteriology, 198, 1149–1159, 2016, http://dx.doi.org/10.1128/jb.00896-15.
Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells
M.D. Hoffman, L.I. Zucker, P.J.B. Brown, D.T. Kysela, Y.V. Brun, and S.C. Jacobson
Analytical Chemistry, 87, 12032–12039, 2015, http://dx.doi.org/10.1021/acs.analchem.5b02087.
Monitoring Assembly of Virus Capsids with Nanofluidic Devices
Z.D. Harms, L. Selzer, A. Zlotnick, and S.C. Jacobson
ACS Nano, 9, 9087–9096, 2015, http://dx.doi.org/10.1021/acsnano.5b03231.
Conductivity-Based Detection Techniques in Nanofluidic Devices
Z.D. Harms, D.G. Haywood, A.R. Kneller, and S.C. Jacobson
Analyst, 140, 4779–4791, 2015, http://dx.doi.org/10.1039/c5an00075k.
Single Particle Electrophoresis in Nanochannels
Z.D. Harms, D.G. Haywood, A.R. Kneller, L. Selzer, A. Zlotnick, and S.C. Jacobson
Analytical Chemistry, 87, 699–705, 2015, http://dx.doi.org/10.1021/ac503527d.
Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipettes
D.G. Haywood, A. Saha-Shah, L.A. Baker, and S.C. Jacobson
Analytical Chemistry, 87, 172–187, 2015, http://dx.doi.org/10.1021/ac504180h.
Electroosmotic Flow in Nanofluidic Channels
D.G. Haywood, Z.D. Harms, and S.C. Jacobson
Analytical Chemistry, 86, 11174–11180, 2014, http://dx.doi.org/10.1021/ac502596m.
Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths
I. Mitra, S.P. Marczak, and S.C. Jacobson
Electrophoresis, 35, 374-378, 2014, http://dx.doi.org/10.1002/elps.201300427.
Comparative Profiling of N-Glycans Isolated from Serum Samples of Ovarian Cancer Patients and Analyzed by Microchip Electrophoresis
I. Mitra, W.R. Alley, Jr., J.A. Goetz, J.A. Vasseur, M.V. Novotny, and S.C. Jacobson
Journal of Proteome Research, 12, 4490–4496, 2013, http://dx.doi.org/10.1021/pr400549e.
Software-Programmable Continuous-Flow Multi-Purpose Lab-on-a-Chip
A.M. Amin, R. Thakur, S.M. Madren, H.-S. Chuang, M. Thottethodi, T.N. Vijaykumar, S.T. Wereley, and S.C. Jacobson
Microfluidics and Nanofluidics, 15, 647–659, 2013, http://dx.doi.org/10.1007/s10404-013-1180-2.
Microfluidic Device for Automated Synchronization of Bacterial Cells
S.M. Madren, M.D. Hoffman, P.J.B. Brown, D.T. Kysela, Y.V. Brun, and S.C. Jacobson
Analytical Chemistry, 84, 8571–8578, 2012, http://dx.doi.org/10.1021/ac301565g.
N-Glycan Profiling by Microchip Electrophoresis to Differentiate Disease-States Related to Esophageal Adenocarcinoma
Mitra, Z. Zhuang, Y. Zhang, C.-Y. Yu, Z.T. Hammoud, H. Tang, Y. Mechref, S.C. Jacobson
Analytical Chemistry, 84, 3621–3627, 2012, http://dx.doi.org/10.1021/ac203431s.
3D Nanofluidic Channels Shaped by Electron-Beam-Induced Etching
J.M. Perry, Z.D. Harms, and S.C. Jacobson
Small, 8, 1521–1526, 2012, http://dx.doi.org/10.1002/smll.201102240.
Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel-Nanofunnel Device
D. Hlushkou, J.M. Perry, S.C. Jacobson, and U. Tallarek
Analytical Chemistry, 84, 267–274, 2012, http://dx.doi.org/10.1021/ac202501v.
Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids
Z.D. Harms, K.B. Mogensen, P.S. Nunes, K. Zhou, B.W. Hildenbrand, I. Mitra, Z. Tan, A. Zlotnick, J.P. Kutter, and S.C. Jacobson.
Analytical Chemistry, 83, 9573–9578, 2011, http://dx.doi.org/10.1021/ac202358t.
Transport and Sensing in Nanofluidic Devices
K. Zhou, J.M. Perry, and S.C. Jacobson
Annual Review of Analytical Chemistry, 4, 321–341, 2011, http://dx.doi.org/10.1146/annurev-anchem-061010-113938.
Characterization of Hepatitis B Virus Capsids by Resistive-Pulse Sensing
K. Zhou, L. Li, Z. Tan, A. Zlotnick, and S.C. Jacobson
Journal of the American Chemical Society, 133, 1618–1621, 2011, http://dx.doi.org/10.1021/ja108228x.
Microchip Electrophoresis of N-Glycans on Serpentine Separation Channels with Asymmetrically Tapered Turns
Zhuang, I. Mitra, A. Hussein, M.V. Novotny, Y. Mechref, and S.C. Jacobson
Electrophoresis, 32, 246–253, 2011, http://dx.doi.org/10.1002/elps.201000461.
Microchannel-Nanopore Device for Bacterial Chemotaxis Assays
M.L. Kovarik, P.J.B. Brown, D.T. Kysela, C. Berne, A.C. Kinsella, Y.V. Brun, and S.C. Jacobson
Analytical Chemistry, 82, 9357–9364, 2010, http://dx.doi.org/10.1021/ac101977f.
Ion Transport in Nanofluidic Funnels
J.M. Perry, K. Zhou, Z.D. Harms, and S.C. Jacobson
ACS Nano, 4, 3897–3902, 2010, http://dx.doi.org/10.1021/nn100692z.
H.-S. Chuang, S.C. Jacobson, and S.T. Wereley
A Diffusion-based Cyclic Particle Extractor
Microfluidics and Nanofluidics, 9, 743–753, 2010, http://dx.doi.org/10.1007/s10404-010-0589-0.
Effect of Conical Nanopore Diameter on Ion Current Rectification
M.L. Kovarik, K. Zhou, and S.C. Jacobson
The Journal of Physical Chemistry B, 113, 15960–15966, 2009, http://dx.doi.org/10.1021/jp9076189.
Nanofluidics in Lab-on-a-Chip Devices
M.L. Kovarik and S.C. Jacobson
Analytical Chemistry, 81, 7133–7140, 2009, http://dx.doi.org/10.1021/ac900614k.
Serial-to-Parallel Interfaces for Efficient Sample Transfer on Microfluidic Devices
Z. Zhuang and S.C. Jacobson
Analytical Chemistry, 81, 1477–1481, 2009, http://dx.doi.org/10.1021/ac801774p.
Water-assisted Femtosecond Laser Machining of Electrospray Nozzles on Glass Microfluidic Devices
R. An, M.D. Hoffman, M.A. Donoghue, A.J. Hunt, and S.C. Jacobson
Optics Express, 16, 15206–15211, 2008, http://dx.doi.org/10.1364/OE.16.015206.
Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices
K. Zhou, M.L Kovarik, and S.C. Jacobson.
Journal of the American Chemical Society, 130, 8614–8616, 2008, http://dx.doi.org/10.1021/ja802692x.
Automatic Volume Management for Programmable Microfluidics
A. Amin, M.S. Thottethodi, T.N. Vijaykumar, S.T. Wereley, and S.C. Jacobson
ACM Sigplan Notices, 56–67, 2008, http://dx.doi.org/10.1145/1375581.1375590.
Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection
O. Gustafsson, K.B. Mogensen, P.D. Ohlsson, Y. Liu, S.C. Jacobson, and J.P. Kutter
Journal of Micromechanics and Microengineering, 18, 055021, 2008, http://dx.doi.org/10.1088/0960-1317/18/5/055021.
Integrated Nanopore/Microchannel Devices for AC Electrokinetic Trapping of Particles
M.L. Kovarik and S.C. Jacobson
Analytical Chemistry, 80, 657–664, 2008, http://dx.doi.org/10.1021/ac701759f.
Influence of Channel Position on Sample Confinement in Two-Dimensional Planar Microfluidic Devices
M.A. Lerch, M.D. Hoffman, and S.C. Jacobson
Lab on a Chip, 8, 316–322, 2008, http://dx.doi.org/10.1039/b713500a.
Compact Microfluidic Structures for Generating Spatial and Temporal Gradients
D. Amarie, J.A. Glazier, and S.C. Jacobson
Analytical Chemistry, 79, 9471–9477, 2007, http://dx.doi.org/10.1021/ac0714967.
Electrokinetic Fluid Control in Two-Dimensional Planar Microfluidic Devices
M.A. Lerch and S.C. Jacobson
Analytical Chemistry, 79, 7485–7491, 2007, http://dx.doi.org/10.1021/ac071003y.
Electrophoretic Analysis of N-Glycans on Microfluidic Devices
Z. Zhuang, J.A. Starkey, Y. Mechref, M.V. Novotny, and S.C. Jacobson
Analytical Chemistry, 79, 7170–7175, 2007, http://dx.doi.org/10.1021/ac071261v.
AquaCore: A Programmable Architecture for Microfluidics
A. Amin, M.S. Thottethodi, T.N. Vijaykumar, S.T. Wereley, and S.C. Jacobson
Proceedings of the 34th International Symposium on Computer Architecture, 34, 254–265, 2007, http://dx.doi.org/10.1145/1250662.1250694.
Attoliter-Scale Dispensing in Nanofluidic Channels
M.L. Kovarik and S.C. Jacobson
Analytical Chemistry, 79, 1655–1660, 2007, http://dx.doi.org/10.1021/ac061814m.
Fabrication of Three-Dimensional Micro- and Nanoscale Features with Single-Exposure Photolithography
M.L. Kovarik and S.C. Jacobson.
Analytical Chemistry, 78, 5214–5217, 2006, http://dx.doi.org/10.1021/ac0604540.
Chemotaxis Assays of Mouse Sperm on Microfluidic Devices
S. Koyama, D. Amarie, H.A. Soini, M.V. Novotny, and S.C. Jacobson.
Analytical Chemistry, 78, 3354–3359, 2006, http://dx.doi.org/10.1021/ac052087i.
Three-Dimensional Mapping of the Light Intensity Transmitted through Nanoapertures
D. Amarie, N.D. Rawlinson, W.L. Schaich, B. Dragnea, and S.C. Jacobson
Nano Letters, 5, 1227–1230, 2005, http://dx.doi.org/10.1021/nl050891e.
Stacking due to Ionic Transport Number Mismatch during Sample Sweeping on Microchips
Y. Liu, R.S. Foote, S.C. Jacobson, and J.M. Ramsey
Lab on a Chip, 5, 457–465, 2005, http://dx.doi.org/10.1039/b416414h.
Static and Dynamic Acute Cytotoxicity Assays on Microfluidic Devices
C.R. Poulsen, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 77, 667–672, 2005, http://dx.doi.org/10.1021/ac049279i.
Preconcentration of Proteins on Microfluidic Devices using Porous Silica Membranes
R.S. Foote, J. Khandurina, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 77, 57–63, 2005, http://dx.doi.org/10.1021/ac049136w.
Strategy for Repetitive Pinched Injections on a Microfluidic Device
C.D. Thomas, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 76, 6053–6057, 2004, http://dx.doi.org/10.1021/ac035475y.
Optical Trapping with Integrated Near-Field Apertures
E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S.C. Jacobson, W.L. Schaich, and B. Dragnea
The Journal of Physical Chemistry B, 108, 13607–13612, 2004, http://dx.doi.org/10.1021/jp048028a.
Microfluidic Devices for the High Throughput Chemical Analysis of Cells
M.A. McClain, C.T. Culbertson, S.C. Jacobson, N.L. Allbritton, C.E. Sims, and J.M. Ramsey
Analytical Chemistry, 75, 5646–5655, 2003, http://dx.doi.org/10.1021/ac0346510.
Effects of Microfabrication Processing on the Electrochemistry of Carbon Nanofiber Electrodes
T.E. McKnight, A.V. Melechko, M.A. Guillorn, V.I. Merkulov, M. Doktycz, C.T. Culbertson, S.C. Jacobson, D.H. Lowndes, and M.L. Simpson
The Journal of Physical Chemistry B, 107, 10722–10728, 2003, http://dx.doi.org/10.1021/jp034872+.
High Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices
J.D. Ramsey, S.C. Jacobson, C.T. Culbertson, and J.M. Ramsey
Analytical Chemistry, 75, 3758–3764, 2003, http://dx.doi.org/10.1021/ac0264574.
Electrohydrodynamic Mixing in Microchannels
C. Tsouris, C.T. Culbertson, D.W. DePaoli, S.C. Jacobson, V.F. de Almeida, and J.M. Ramsey
AIChE Journal, 49, 2181–2186, 2003, http://dx.doi.org/10.1002/aic.690490825.
Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices
B.S. Broyles, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 75, 2761–2767, 2003, http://dx.doi.org/10.1021/ac025503x.
Diffusion Coefficient Measurements Using Microfluidic Devices
C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Talanta, 56, 365–373, 2002, http://dx.doi.org/10.1016/S0039-9140(01)00602-6.
Flow Cytometry of Esherichia coli on Microfluidic Devices.
M.A. McClain, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 73, 5334–5338, 2001, http://dx.doi.org/10.1021/ac010504v.
Electroosmotically Induced Hydraulic Pumping with Integrated Electrodes on Microfluidic Devices
T.E. McKnight, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 73, 4045–4049, 2001, http://dx.doi.org/10.1021/ac010048a.
Two-Dimensional Electrochromatography/Capillary Electrophoresis Microchip Device
N. Gottschlich, S.C. Jacobson, C.T. Culbertson, and J.M. Ramsey
Analytical Chemistry, 73, 2669–2674, 2001, http://dx.doi.org/10.1021/ac001019n.
Electrophoretic Injection Bias in Microchip Valving
J.P. Alarie, S.C. Jacobson, and J.M. Ramsey
Electrophoresis, 22, 312–317, 2001, http://dx.doi.org/10.1002/1522-2683(200101)22:2<312::AID-ELPS312>3.0.CO;2-3.
Microchip Devices for High Efficiency Separations
C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 72, 5814–5819, 2000, http://dx.doi.org/10.1021/ac0006268.
Electrophoretic Separation of Proteins on a Microchip with Noncovalent, Postcolumn Labeling
Y. Liu, R.S. Foote, S.C. Jacobson, R.S. Ramsey, and J.M. Ramsey
Analytical Chemistry, 72, 4608–4613, 2000, http://dx.doi.org/10.1021/ac000625f.
Electrophoretic Separation of Proteins on Microchips
Y. Liu, R.S. Foote, C.T. Culbertson, S.C. Jacobson, R.S. Ramsey, and J.M. Ramsey
Journal of Microcolumn Separations, 12, 407–411, 2000, http://dx.doi.org/10.1002/1520-667X(2000)12:7<407::AID-MCS4>3.0.CO;2-C.
Novel Microfabricated Device for Electrokinetically Induced Pressure Flow and Electrospray Ionization Mass Spectrometry
I.M. Lazar, R.S. Ramsey, S.C. Jacobson, R.S. Foote, and J.M. Ramsey
Journal of Chromatography A, 892, 195–201, 2000, http://dx.doi.org/10.1016/S0021-9673(00)00335-6.
Integrated Microchip-Device for the Digestion, Separation, and Postcolumn Labeling of Proteins and Peptides
Gottschlich, C.T. Culbertson, T.E. McKnight, S.C. Jacobson, and J.M. Ramsey
Journal of Chromatography B, 745, 243–249, 2000, http://dx.doi.org/10.1016/S0378-4347(00)00287-5.
Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices
J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey
Analytical Chemistry, 72, 2995–3000, 2000, http://dx.doi.org/10.1021/ac991471a.
Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices
S.V. Ermakov, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 72, 3512–3517, 2000, http://dx.doi.org/10.1021/ac991474n.
Polymer Microparticle Arrays from Electrodynamically Focused Microdroplet Streams
K.C. Ng, J.V. Ford, S.C. Jacobson, J.M. Ramsey, and M.D. Barnes
Review of Scientific Instruments, 71, 2497–2499, 2000, http://dx.doi.org/10.1063/1.1150642.
Characterization of Cellular Optoporation with Distance
J.S. Soughayer, T. Krasieva, S.C. Jacobson, J.M. Ramsey, B.J. Tromberg, and N.L. Allbritton
Analytical Chemistry, 72, 1342–1347, 2000, http://dx.doi.org/10.1021/ac990982u.
PCR Amplification and Analysis of Simple Sequence Length Polymorphisms in Mouse DNA Using a Single Microchip Device
W.C. Dunn, S.C. Jacobson, L.C. Waters, N. Kroutchinina, J. Khandurina, R. S. Foote, M.J. Justice, L.J. Stubbs, and J.M. Ramsey
Analytical Biochemistry, 277, 157–160, 2000, http://dx.doi.org/10.1006/abio.1999.4397.
Effects of the Electric Field Distribution on Microchip Valving Performance
J.P. Alarie, S.C. Jacobson, C.T. Culbertson, and J.M. Ramsey
Electrophoresis, 21, 100–106, 2000, http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<100::AID-ELPS100>3.0.CO;2-P.
Solid Phase Extraction on Microfluidic Devices
J.P. Kutter, S.C. Jacobson, and J.M. Ramsey
Journal of Microcolumn Separations, 12, 93–97, 2000, http://dx.doi.org/10.1002/(SICI)1520-667X(2000)12:2<93::AID-MCS5>3.0.CO;2-P.
Microfluidic Assays of Acetylcholinesterase Inhibitors
A.G. Hadd, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 71, 5206–5212, 1999, http://dx.doi.org/10.1021/ac990591f.
Ultrasensitive Cross-Correlation Electrophoresis on Microchip Devices
J.C. Fister, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 71, 4460–4464, 1999, http://dx.doi.org/10.1021/ac990853d.
Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing
S.C. Jacobson, T.E. McKnight, and J.M. Ramsey
Analytical Chemistry, 71, 4455–4459, 1999, http://dx.doi.org/10.1021/ac990576a.
Microchip Flow Cytometry Using Electrokinetic Focusing
D.P. Schrum, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 71, 4173–4177, 1999, http://dx.doi.org/10.1021/ac990372u.
Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices
S.C. Jacobson, S.V. Ermakov, and J.M. Ramsey
Analytical Chemistry, 71, 3273–3276, 1999, http://dx.doi.org/10.1021/ac990059s.
Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis
J. Khandurina, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey
Analytical Chemistry, 71, 1815–1819, 1999, http://dx.doi.org/10.1021/ac981161c.
Multiple Sample PCR Amplification and Electrophoretic Analysis on a Microchip
L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, and J.M. Ramsey
Analytical Chemistry, 70, 5172–5176, 1998, http://dx.doi.org/10.1021/ac980447e.
Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures
S.V. Ermakov, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 70, 4494–4504, 1998, http://dx.doi.org/10.1021/ac980551w.
Dispersion Sources for Compact Geometries on Microchips
C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 70, 3781–3789, 1998, http://dx.doi.org/10.1021/ac9804487.
Microchip Structures for Submillisecond Electrophoresis
S.C. Jacobson, C.T. Culbertson, J.E. Daler, and J.M. Ramsey
Analytical Chemistry, 70, 3476–3480, 1998, http://dx.doi.org/10.1021/ac980349t.
Solvent-Programmed Microchip Open-Channel Electrochromatography
J.P. Kutter, S.C. Jacobson, N. Matsubara, and J.M. Ramsey
Analytical Chemistry, 70, 3291–3297, 1998, http://dx.doi.org/10.1021/ac971367y.
Degenerate Oligonucleotide Primed-Polymerase Chain Reaction and Capillary Electrophoretic Analysis of Human DNA on Microchip-Based Devices
J. Cheng, L.C. Waters, P. Fortina, G. Hvichia, S.C. Jacobson, J.M. Ramsey, L.J. Kricka, and P. Wilding
Analytical Biochemistry, 257, 101–106, 1998, http://dx.doi.org/10.1006/abio.1997.2531.
Determination of Metal Cations in Microchip Electrophoresis Using On-Chip Complexation and Sample Stacking
J.P. Kutter, R.S. Ramsey, S.C. Jacobson, and J.M. Ramsey
Journal of Microcolumn Separations, 10, 313–319, 1998, http://dx.doi.org/10.1002/(SICI)1520-667X(1998)10:4<313::AID-MCS1>3.0.CO;2-J.
Counting Single-Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices
J.C. Fister, S.C. Jacobson, L.M. Davis, and J.M. Ramsey
Analytical Chemistry, 70, 431–437, 1998, http://dx.doi.org/10.1021/ac9707242.
Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing
L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, and J.M. Ramsey
Analytical Chemistry, 70, 158–162, 1998, http://dx.doi.org/10.1021/ac970642d.
Integrated Microchip Device with Electrokinetically Controlled Solvent Mixing for Isocratic and Gradient Elution in Micellar Electrokinetic Chromatography
J.P. Kutter, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 69, 5165–5171, 1997, http://dx.doi.org/10.1021/ac970723+.
Microchip Device for Performing Enzyme Assays
A.G. Hadd, D.E. Raymond, J.W. Halliwell, S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 69, 3407–3412, 1997, http://dx.doi.org/10.1021/ac970192p.
Low Temperature Bonding for Microfabrication of Chemical Analysis Devices
H.Y. Wang, R.S. Foote, S.C. Jacobson, J.H. Schneibel, and J.M. Ramsey
Sensors and Actuators B, 45, 199–207, 1997, http://dx.doi.org/10.1016/S0925-4005(97)00294-3.
Electrokinetic Focusing on Microfabricated Channel Structures
S.C. Jacobson and J.M. Ramsey
Analytical Chemistry, 69, 3212–3217, 1997, http://dx.doi.org/10.1021/ac961093z.
Integrated Microdevice for DNA Restriction Fragment Analysis
S.C. Jacobson and J.M. Ramsey
Analytical Chemistry, 68, 720–723, 1996, http://dx.doi.org/10.1021/ac951230c.
Microchip Electrophoresis with Sample Stacking
S.C. Jacobson and J.M. Ramsey
Electrophoresis, 16, 481–486, 1995, http://dx.doi.org/10.1002/elps.1150160179.
Microchip Separations of Neutral Species Via Micellar Electrokinetic Capillary Chromatography
A.W. Moore, Jr., S.C. Jacobson, and J.M. Ramsey
Analytical Chemistry, 67, 4184–4189, 1995, http://dx.doi.org/10.1021/ac00118a023.
Microfabricated Chemical Measurement Systems
J.M. Ramsey, S.C. Jacobson, and M.R. Knapp
Nature Medicine, 1, 1093–1096, 1995, http://dx.doi.org/10.1038/nm1095-1093.
Fused Quartz Substrates for Microchip Electrophoresis
S.C. Jacobson, A.W. Moore, Jr., and J.M. Ramsey
Analytical Chemistry, 67, 2059–2063, 1995, http://dx.doi.org/10.1021/ac00109a026.
Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip
S.C. Jacobson, R. Hergenröder, A.W. Moore, Jr., and J.M. Ramsey
Analytical Chemistry, 66, 4127–4132, 1994, http://dx.doi.org/10.1021/ac00095a003.
Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor
S.C. Jacobson, L.B. Koutny, R. Hergenröder, A.W. Moore, Jr., and J.M. Ramsey
Analytical Chemistry, 66, 3472–3476, 1994, http://dx.doi.org/10.1021/ac00092a027.
Open Channel Electrochromatography on a Microchip
S.C. Jacobson, R. Hergenröder, L.B. Koutny, and J.M. Ramsey
Analytical Chemistry, 66, 2369–2373, 1994, http://dx.doi.org/10.1021/ac00086a024.
High-Speed Separations on a Microchip
S.C. Jacobson, R. Hergenröder, L.B. Koutny, and J.M. Ramsey
Analytical Chemistry, 66, 1114–1118, 1994, http://dx.doi.org/10.1021/ac00079a029.
Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices
S.C. Jacobson, R. Hergenröder, L.B. Koutny, R.J. Warmack, and J.M. Ramsey
Analytical Chemistry, 66, 1107–1113, 1994, http://dx.doi.org/10.1021/ac00079a028.
Estimation of the Number of Enantioselective Sites of Bovine Serum Albumin Using Frontal Chromatography
S.C. Jacobson, S. Andersson, S. Allenmark, and G. Guiochon
Chirality, 5, 513–515, 1993, http://dx.doi.org/10.1002/chir.530050707.
Study of Band Broadening in Enantioselective Separations Using Microcrystalline Cellulose Triacetate: II. Frontal Analysis
A. Seidel-Morgenstern, S.C. Jacobson, and G. Guiochon
Journal of Chromatography, 637, 19–28, 1993, http://dx.doi.org/10.1016/0021-9673(93)83094-9.
Study of Band Broadening in Enantioselective Separations Using Microcrystalline Cellulose Triacetate: I. The Linear Case.
S.C. Jacobson, A. Seidel-Morgenstern, and G. Guiochon.
Journal of Chromatography, 637, 13–18, 1993, http://dx.doi.org/10.1016/0021-9673(93)83093-8.
Modeling of the Adsorption Behavior and the Chromatographic Band Profiles of Enantiomers: Behavior of Methyl Mandelate on Immobilized Cellulose
F. Charton, S.C. Jacobson, and G. Guiochon
Journal of Chromatography, 630, 21–35, 1993, https://doi.org/10.1016/0021-9673(93)80439-F.
Optimizing the Sample Size and the Retention Parameters to Achieve Maximum Production Rates for Enantiomers in Chiral Chromatography
S.C. Jacobson, A. Felinger, and G. Guiochon
Biotechnology and Bioengineering, 40, 1210–1217, 1992, http://dx.doi.org/10.1002/bit.260401011.
Optimizing the Sample Size and the Reduced Velocity to Achieve Maximum Production Rates for Enantiomers
S.C. Jacobson, A. Felinger, and G. Guiochon
Biotechnology Progress, 8, 533–539, 1992, http://dx.doi.org/10.1021/bp00018a010.
Prediction of High Concentration Band Profiles in Liquid Chromatography
A.M. Katti, M. Diack, M.Z. El Fallah, S. Golshan-Shirazi, S.C. Jacobson, A. Seidel-Morgenstern, and G. Guiochon
Accounts of Chemical Research, 25, 366–374, 1992, http://dx.doi.org/10.1021/ar00020a007.
Enantiomeric Separations Using Bovine Serum Albumin Immobilized on Ion Exchange Stationary Phases
S.C. Jacobson and G. Guiochon
Analytical Chemistry, 64, 1496–1498, 1992, http://dx.doi.org/10.1021/ac00037a032.
Contribution of Ionically Immobilized Bovine Serum Albumin to the Retention of Enantiomers
S.C. Jacobson and G. Guiochon
Journal of Chromatography, 600, 37–42, 1992, http://dx.doi.org/10.1016/0021-9673(92)85434-U.
Experimental Study of the Production Rate of Pure Enantiomers from Racemic Mixtures
S.C. Jacobson and G. Guiochon
Journal of Chromatography, 590, 119–126, 1992, http://dx.doi.org/10.1016/0021-9673(92)87012-W.
Isotherm Selection for Band Profile Simulations in Preparative Chromatography
S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon
AIChE Journal, 37, 836–844, 1991, http://dx.doi.org/10.1002/aic.690370606.
Determination of Isotherms from Chromatographic Peak Shapes
E.V. Dose, S.C. Jacobson, and G. Guiochon
Analytical Chemistry, 63, 833–839, 1991, http://dx.doi.org/10.1021/ac00008a020.
Influence of the Mobile Phase Composition on the Adsorption Isotherms of an Amino-Acid Derivative on Immobilized Bovine Serum Albumin
S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon
Chromatographia, 31, 323–328, 1991, http://dx.doi.org/10.1007/BF02262186.
Measurement of the Heats of Adsorption for Chiral Isomers on an Enantioselective Stationary Phase
S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon
Journal of Chromatography, 522, 23–36, 1990, http://dx.doi.org/10.1016/0021-9673(90)85174-T.
Chromatographic Band Profiles and Band Separation of Optical Isomers at High Concentration
S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon
Journal of the American Chemical Society, 112, 6492–6498, 1990, http://dx.doi.org/10.1021/ja00174a007.
Theoretical Study of Multi-Component Interferences in Non-Linear Chromatography
S.C. Jacobson, S. Golshan-Shirazi, A. Katti, Z. Ma, M. Czok, and G. Guiochon
Journal of Chromatography, 484, 103–124, 1989, http://dx.doi.org/10.1016/S0021-9673(01)88964-0.