Publications

144
Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface

Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface

A. Patterson, K. Young, M.P. Biever, S.M. Klein, S.-Y. Huang, P.A. DePhillips, S.C. Jacobson, M.F. Jarrold, and A. Zlotnick.

Virology, 600, 110211, 2024, https://doi.org/10.1016/j.virol.2024.110211.

Publication Link


143
Complementary Nanoparticle Characterization by Resistive-Pulse Sensing, Electron Microscopy, and Charge Detection Mass Spectrometry

Complementary Nanoparticle Characterization by Resistive-Pulse Sensing, Electron Microscopy, and Charge Detection Mass Spectrometry

L.M. Miller, T.W. Young, Y. Wang, B.E. Draper, X. Ye, S.C. Jacobson, and M.F. Jarrold.

Analytical Chemistry, 96, 14239–14247, 2024, https://doi.org/10.1021/acs.analchem.4c02901.

Publication Link


142
Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles

Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles

B.L. Pope, M. Zhang, S. Jo, B. Dragnea, S.C. Jacobson.

Analytical Chemistry, 96, 11845–11852, 2024, https://doi.org/10.1021/acs.analchem.4c01521.

Publication Link


141
Integrated In-Plane Nanofluidic Devices for Resistive-Pulse Sensing

Integrated In-Plane Nanofluidic Devices for Resistive-Pulse Sensing

T.W. Young, M.P. Kappler, E.D. Call, Q.J. Brown, S.C. Jacobson.

Annual Review of Analytical Chemistry, 17, 221-42, 2024, https://doi.org/10.1146/annurev-anchem-061622-030223.

Publication Link


140
Modular Anti-Counterfeit Tags Formed by Template-Assisted Self-Assembly of Plasmonic Nanocrystals and Authenticated by Machine Learning

Modular Anti-Counterfeit Tags Formed by Template-Assisted Self-Assembly of Plasmonic Nanocrystals and Authenticated by Machine Learning

M. Ibrar, S.-Y. Huang, Z. McCurtain, S. Naha, , D.J. Crandall, S.C. Jacobson, and S.E. Skrabalak.

Advanced Functional Materials, 34, 2400842, 2024, https://doi.org/10.1002/adfm.202400842.

Publication Link


139
Characterization of Extracellular Vesicles by Resistive-Pulse Sensing on In-Plane Multipore Nanofluidic Devices

Characterization of Extracellular Vesicles by Resistive-Pulse Sensing on In-Plane Multipore Nanofluidic Devices

T.W. Young, M.P. Kappler, N.M. Hockaden, R.L. Carpenter, S.C. Jacobson.

Analytical Chemistry, 95, 16710–16716, 2023, https://doi.org/10.1021/acs.analchem.3c03546.

Publication Link


138
Mechanistic Insights into Electrocatalytic Carbon−Bromine Bond Cleavage in Polybrominated Phenols

Mechanistic Insights into Electrocatalytic Carbon−Bromine Bond Cleavage in Polybrominated Phenols

E.C.R. McKenzie, S. Hosseini, M. Tanwar, M. Neurock, S. D. Minteer, and S. C. Jacobson

The Journal of Physical Chemistry C, 127, 17335-17344, 2023, https://doi.org/10.1021/acs.jpcc.3c01506.

Publication Link


137
The Precision Toxicology Initiative

The Precision Toxicology Initiative

J.K. Colbourne, E. Andrews, M. Barnard, et al.

Toxicology Letters, 383, 33–42, 2023, https://doi.org/10.1016/j.toxlet.2023.05.004.

Publication Link


136
Mapping Complex Profiles of Light Intensity with Interferometric Lithography

Mapping Complex Profiles of Light Intensity with Interferometric Lithography

J.B. Holmes, M. Zhang, T. Greibe, W.L. Schaich, S.C. Jacobson, and B. Dragnea.

Nanoscale Advances, 5, 2045–2053, 2023, https://doi.org/10.1039/d2na00570k.

Publication Link


135
Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation

Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation

C.A. Starr, S. Nair, S.-Y. Huang, M.F. Hagan, S.C. Jacobson, A. Zlotnick.

Journal of the American Chemical Society, 145, 2322–2331, 2023, https://doi.org/10.1021/jacs.2c10937.

Publication Link


134
Fractionation and Characterization of Sialyl Linkage Isomers of Serum N-Glycans by CE-MS

Fractionation and Characterization of Sialyl Linkage Isomers of Serum N-Glycans by CE-MS

X. Zhou, W. Song, M.V. Novotny, and S.C. Jacobson

Journal of Separation Science, 45, 3348–3361, 2022, https://doi.org/10.1002/jssc.202200223.

Publication Link


133
In-Plane, In-Series Nanopores with Circular Cross-Sections for Resistive-Pulse Sensing

In-Plane, In-Series Nanopores with Circular Cross-Sections for Resistive-Pulse Sensing

M. Zhang, Z.D. Harms, T. Greibe, C.A. Starr, A. Zlotnick, and S.C. Jacobson

ACS Nano, 16, 7352–7360, 2022, https://doi.org/10.1021/acsnano.1c08680.

Publication Link


132
Nitric Oxide Stimulates Type IV MSHA Pilus Retraction in Vibrio cholerae via Activation of the Phosphodiesterase CdpA

Nitric Oxide Stimulates Type IV MSHA Pilus Retraction in Vibrio cholerae via Activation of the Phosphodiesterase CdpA

H.Q. Hughes, K.A. Floyd, S. Hossain, S. Anantharaman, D.T. Kysela, Y. Yu, M.P. Kappler, T.N. Dalia, R.C. Podicheti, D.B. Rusch, Y.V. Brun, S.C. Jacobson, J.B. McKinlay, F.H. Yildiz, E.M. Boon, and A.B. Dalia

Proceedings of the National Academy of Sciences, U.S.A., 119, e2108349119, 2022, https://doi.org/10.1073/pnas.2108349119.

Publication Link


131
Disassembly of Single Virus Capsids Monitored in Real Time with Multi-Cycle Resistive-Pulse Sensing

Disassembly of Single Virus Capsids Monitored in Real Time with Multi-Cycle Resistive-Pulse Sensing

J. Zhou, A. Zlotnick, and S.C. Jacobson

Analytical Chemistry, 94, 985–992, 2022, https://doi.org/10.1021/acs.analchem.1c03855.

Publication Link


130
The Division Defect of a Bacillus subtilis minD noc Double Mutant Can Be Suppressed by Spx-dependent and Spx-independent Mechanisms.

The Division Defect of a Bacillus subtilis minD noc Double Mutant Can Be Suppressed by Spx-dependent and Spx-independent Mechanisms.

Y. Yu, F. Dempwolff, R.T. Oshiro, F.J. Gueiros-Filho, S.C. Jacobson, and D.B. Kearns

Journal of Bacteriology, 203, e00249-2, 2021, https://doi.org/10.1128/JB.00249-21.

Publication Link


129
Arsenic Exposure Induces a Bimodal Toxicity Response in Zebrafish

Arsenic Exposure Induces a Bimodal Toxicity Response in Zebrafish

J.A. Coral, S. Heaps, S.P. Glaholt, J.A. Karty, S.C. Jacobson, J.R. Shaw, and M. Bondesson

Environmental Pollution, 287, 117637, 2021, https://doi.org/10.1016/j.envpol.2021.117637.

Publication Link


128
Noc Corrals Migration of FtsZ Protofilaments during Cytokinesis in Bacillus subtilis.

Noc Corrals Migration of FtsZ Protofilaments during Cytokinesis in Bacillus subtilis.

Y. Yu, J. Zhou, F. Gueiros-Filho, D.B. Kearns, and S.C. Jacobson

mBio, 12, e02964-20, 2021, https://doi.org/10.1128/mBio.02964-20.

Publication Link


127
Asymmetrizing an Icosahedral Virus Capsid by Hierarchical Assembly of Subunits with Designed Asymmetry

Asymmetrizing an Icosahedral Virus Capsid by Hierarchical Assembly of Subunits with Designed Asymmetry

Z. Zhao, J. C.-Y. Wang, M. Zhang, N.A. Lyktey, M.F. Jarrold, S.C. Jacobson, and A. Zlotnick

Nature Communications, 12, 589, 2021, https://doi.org/10.1038/s41467-020-20862-1.

Publication Link


126
Glycoproteomic Analysis of Human Urinary Exosomes

Glycoproteomic Analysis of Human Urinary Exosomes

C.J. Brown, S. Gaunitz, Z. Wang, L. Strindelius, S.C. Jacobson, D.E. Clemmer, J.C. Trinidad, and M.V. Novotny.

Analytical Chemistry, 92, 14357–14365, 2020, https://doi.org/10.1021/acs.analchem.0c01952.

Publication Link


125
Exosome-Mediated Crosstalk Between Keratinocytes and Macrophages in Cutaneous Wound Healing

Exosome-Mediated Crosstalk Between Keratinocytes and Macrophages in Cutaneous Wound Healing

X. Zhou, B.A. Brown, A. Siegel, M.S. El Masry, X. Zeng, W. Song, A. Das, P. Khandelwal, A. Clark, K. Singh, P.R. Guda, M. Gorain, L. Timsina, Y. Xuan, S.C. Jacobson, M.V. Novotny, S. Roy, M. Agarwal, R.J. Lee, C.K. Sen, D.E. Clemmer, and S. Ghatak

ACS Nano, 14, 12732–12748, 2020, https://doi.org/10.1021/acsnano.0c03064.

Publication Link


124
Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis

Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis

Y. Yu, J. Zhou, F. Dempwolff, J.D. Baker, D.B. Kearns, and S.C. Jacobson

mBio, 11, e03197-19, 2020, https://doi.org/10.1128/mBio.03197-19.

Publication Link


123
In-Depth Compositional and Structural Characterization of N-Glycans Derived from Human Urinary Exosomes

In-Depth Compositional and Structural Characterization of N-Glycans Derived from Human Urinary Exosomes

W. Song, X. Zhou, J.D. Benktander, S. Gaunitz, G. Zou, Z. Wang, M.V. Novotny, and S.C. Jacobson

Analytical Chemistry, 91, 13528–13537, 2019, https://doi.org/10.1021/acs.analchem.9b02620.

Publication Link


122
Evolution of Late-Stage Intermediates during Capsid Assembly of Hepatitis B Virus with Phenylpropenamide-based Antivirals

Evolution of Late-Stage Intermediates during Capsid Assembly of Hepatitis B Virus with Phenylpropenamide-based Antivirals

P. Kondylis, C.J. Schlicksup, S.P. Katen, L.S. Lee, A. Zlotnick, and S.C. Jacobson

ACS Infectious Diseases, 769–777, 2019, https://dx.doi.org/10.1021/acsinfecdis.8b00290.

Publication Link


121
Competition between Normative and Drug-Induced Virus Self-Assembly Observed with Single-Particle Methods

Competition between Normative and Drug-Induced Virus Self-Assembly Observed with Single-Particle Methods

P. Kondylis, C.J. Schlicksup, N.E. Brunk, J. Zhou, A. Zlotnick, and S.C. Jacobson

Journal of the American Chemical Society, 141, 1251–1260, 2019, https://dx.doi.org/10.1021/jacs.8b10131.

Publication Link


120
Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids

Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids

P. Kondylis, C.J. Schlicksup, A. Zlotnick, and S.C. Jacobson

Analytical Chemistry, 91, 622–636, 2019, https://dx.doi.org/10.1021/acs.analchem.8b04824.

Publication Link


119
Characterization of Virus Capsids and Their Assembly Intermediates by Multi-Cycle Resistive-Pulse Sensing with Four Pores in Series

Characterization of Virus Capsids and Their Assembly Intermediates by Multi-Cycle Resistive-Pulse Sensing with Four Pores in Series

J. Zhou, P. Kondylis, D.G. Haywood, Z.D. Harms, L.S. Lee, A. Zlotnick, and S.C. Jacobson

Analytical Chemistry, 90, 7267–7274, 2018, https://dx.doi.org/10.1021/acs.analchem.8b00452.

Publication Link


118
Capillary Electrophoresis–Mass Spectrometry for Direct Structural Identification of Serum N-Glycans.

Capillary Electrophoresis–Mass Spectrometry for Direct Structural Identification of Serum N-Glycans.

C.M. Snyder, X. Zhou, J.A. Karty, B.R. Fonslow, M.V. Novotny, and S.C. Jacobson

Journal of Chromatography A, 1523, 127–139, 2017, https://doi.org/10.1016/j.chroma.2017.09.009.

Publication Link


117
A Molecular Breadboard: Removal and Replacement of Subunits in a Hepatitis B Virus Capsid

A Molecular Breadboard: Removal and Replacement of Subunits in a Hepatitis B Virus Capsid

L.S. Lee, N. Brunk, D.G. Haywood, D. Keifer, E. Pierson, P. Kondylis, J. C.-Y. Wang, S.C. Jacobson, M.F. Jarrold, and A. Zlotnick

Protein Science, 26, 2170–2180, 2017, http://dx.doi.org/10.1002/pro.3265.

Publication Link


116
Single Particle Observation of SV40 VP1 Polyanion-induced Assembly Shows That Substrate Size and Structure Modulate Capsid Geometry

Single Particle Observation of SV40 VP1 Polyanion-induced Assembly Shows That Substrate Size and Structure Modulate Capsid Geometry

C. Li, A.R. Kneller, S.C. Jacobson, and A. Zlotnick

ACS Chemical Biology, 12, 1327–1334, 2017, http://dx.doi.org/10.1021/acschembio.6b01066.

Publication Link


115
Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly

Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly

P. Kondylis, J. Zhou, Z.D. Harms, A.R. Kneller, L.S. Lee, A. Zlotnick, and S.C. Jacobson

Analytical Chemistry, 89, 4855–4862, 2017, http://dx.doi.org/10.1021/acs.analchem.6b04491.

Publication Link


114
Complementary Glycomic Analyses of Sera Derived from Colorectal Cancer Patients by MALDI-TOF-MS and Microchip Electrophoresis

Complementary Glycomic Analyses of Sera Derived from Colorectal Cancer Patients by MALDI-TOF-MS and Microchip Electrophoresis

C.M. Snyder, W.R. Alley, Jr., M.I. Campos, M. Svoboda, J.A. Goetz, J.A. Vasseur, S.C. Jacobson, and M.V. Novotny

Analytical Chemistry, 88, 9597–9605, 2016, http://dx.doi.org/10.1021/acs.analchem.6b02310.

Publication Link


113
Structural Characterization of Serum N-Glycans by Methylamidation, Fluorescent Labeling, and Analysis by Microchip Electrophoresis

Structural Characterization of Serum N-Glycans by Methylamidation, Fluorescent Labeling, and Analysis by Microchip Electrophoresis

I. Mitra, C.M. Snyder, X. Zhou, M.I. Campos, W.R. Alley, Jr., M.V. Novotny, and S.C. Jacobson

Analytical Chemistry, 88, 8965–8971, 2016, http://dx.doi.org/10.1021/acs.analchem.6b00882.

Publication Link


112
Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array to Track Development of Individual Bacteria

Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array to Track Development of Individual Bacteria

J.D. Baker, D.T. Kysela, J. Zhou, S.M. Madren, A.S. Wilkens, Y.V. Brun, and S.C. Jacobson.

Analytical Chemistry, 88, 8476–8483, 2016, http://dx.doi.org/10.1021/acs.analchem.6b00889.

Publication Link


111
AC Electroosmotic Pumping in Nanofluidic Funnels

AC Electroosmotic Pumping in Nanofluidic Funnels

A.R. Kneller, D.G. Haywood, and S.C. Jacobson

Analytical Chemistry, 88, 6390–6394, 2016, http://dx.doi.org/10.1021/acs.analchem.6b00839.

Publication Link


110
Short-stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-like Cell Cycle

Short-stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-like Cell Cycle

M. Williams, M.D. Hoffman, J.J. Daniel, S.M. Madren, A. Dhroso, D. Korkin, S.A. Givan, S.C. Jacobson, and P.J.B. Brown

Journal of Bacteriology, 198, 1149–1159, 2016, http://dx.doi.org/10.1128/jb.00896-15.

Publication Link


109
Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells

Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells

M.D. Hoffman, L.I. Zucker, P.J.B. Brown, D.T. Kysela, Y.V. Brun, and S.C. Jacobson

Analytical Chemistry, 87, 12032–12039, 2015, http://dx.doi.org/10.1021/acs.analchem.5b02087.

Publication Link


108
Monitoring Assembly of Virus Capsids with Nanofluidic Devices

Monitoring Assembly of Virus Capsids with Nanofluidic Devices

Z.D. Harms, L. Selzer, A. Zlotnick, and S.C. Jacobson

ACS Nano, 9, 9087–9096, 2015, http://dx.doi.org/10.1021/acsnano.5b03231.

Publication Link


107
Conductivity-Based Detection Techniques in Nanofluidic Devices

Conductivity-Based Detection Techniques in Nanofluidic Devices

Z.D. Harms, D.G. Haywood, A.R. Kneller, and S.C. Jacobson

Analyst, 140, 4779–4791, 2015, http://dx.doi.org/10.1039/c5an00075k.

Publication Link


106
Single Particle Electrophoresis in Nanochannels

Single Particle Electrophoresis in Nanochannels

Z.D. Harms, D.G. Haywood, A.R. Kneller, L. Selzer, A. Zlotnick, and S.C. Jacobson

Analytical Chemistry, 87, 699–705, 2015, http://dx.doi.org/10.1021/ac503527d.

Publication Link


105
Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipettes

Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipettes

D.G. Haywood, A. Saha-Shah, L.A. Baker, and S.C. Jacobson

Analytical Chemistry, 87, 172–187, 2015, http://dx.doi.org/10.1021/ac504180h.

Publication Link


104
Electroosmotic Flow in Nanofluidic Channels

Electroosmotic Flow in Nanofluidic Channels

D.G. Haywood, Z.D. Harms, and S.C. Jacobson

Analytical Chemistry, 86, 11174–11180, 2014, http://dx.doi.org/10.1021/ac502596m.

Publication Link


103
Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

I. Mitra, S.P. Marczak, and S.C. Jacobson

Electrophoresis, 35, 374-378, 2014, http://dx.doi.org/10.1002/elps.201300427.

Publication Link


102
Comparative Profiling of N-Glycans Isolated from Serum Samples of Ovarian Cancer Patients and Analyzed by Microchip Electrophoresis

Comparative Profiling of N-Glycans Isolated from Serum Samples of Ovarian Cancer Patients and Analyzed by Microchip Electrophoresis

I. Mitra, W.R. Alley, Jr., J.A. Goetz, J.A. Vasseur, M.V. Novotny, and S.C. Jacobson

Journal of Proteome Research, 12, 4490–4496, 2013, http://dx.doi.org/10.1021/pr400549e.

Publication Link


101
Software-Programmable Continuous-Flow Multi-Purpose Lab-on-a-Chip

Software-Programmable Continuous-Flow Multi-Purpose Lab-on-a-Chip

A.M. Amin, R. Thakur, S.M. Madren, H.-S. Chuang, M. Thottethodi, T.N. Vijaykumar, S.T. Wereley, and S.C. Jacobson

Microfluidics and Nanofluidics, 15, 647–659, 2013, http://dx.doi.org/10.1007/s10404-013-1180-2.

Publication Link


100
Microfluidic Device for Automated Synchronization of Bacterial Cells

Microfluidic Device for Automated Synchronization of Bacterial Cells

S.M. Madren, M.D. Hoffman, P.J.B. Brown, D.T. Kysela, Y.V. Brun, and S.C. Jacobson

Analytical Chemistry, 84, 8571–8578, 2012, http://dx.doi.org/10.1021/ac301565g.

Publication Link


99
N-Glycan Profiling by Microchip Electrophoresis to Differentiate Disease-States Related to Esophageal Adenocarcinoma

N-Glycan Profiling by Microchip Electrophoresis to Differentiate Disease-States Related to Esophageal Adenocarcinoma

Mitra, Z. Zhuang, Y. Zhang, C.-Y. Yu, Z.T. Hammoud, H. Tang, Y. Mechref, S.C. Jacobson

Analytical Chemistry, 84, 3621–3627, 2012, http://dx.doi.org/10.1021/ac203431s.

Publication Link


98
3D Nanofluidic Channels Shaped by Electron-Beam-Induced Etching

3D Nanofluidic Channels Shaped by Electron-Beam-Induced Etching

J.M. Perry, Z.D. Harms, and S.C. Jacobson

Small, 8, 1521–1526, 2012, http://dx.doi.org/10.1002/smll.201102240.

Publication Link


97
Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel-Nanofunnel Device

Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel-Nanofunnel Device

D. Hlushkou, J.M. Perry, S.C. Jacobson, and U. Tallarek

Analytical Chemistry, 84, 267–274, 2012, http://dx.doi.org/10.1021/ac202501v.

Publication Link


96
Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

Z.D. Harms, K.B. Mogensen, P.S. Nunes, K. Zhou, B.W. Hildenbrand, I. Mitra, Z. Tan, A. Zlotnick, J.P. Kutter, and S.C. Jacobson.

Analytical Chemistry, 83, 9573–9578, 2011, http://dx.doi.org/10.1021/ac202358t.

Publication Link


95
Transport and Sensing in Nanofluidic Devices

Transport and Sensing in Nanofluidic Devices

K. Zhou, J.M. Perry, and S.C. Jacobson

Annual Review of Analytical Chemistry, 4, 321–341, 2011, http://dx.doi.org/10.1146/annurev-anchem-061010-113938.

Publication Link


94
Characterization of Hepatitis B Virus Capsids by Resistive-Pulse Sensing

Characterization of Hepatitis B Virus Capsids by Resistive-Pulse Sensing

K. Zhou, L. Li, Z. Tan, A. Zlotnick, and S.C. Jacobson

Journal of the American Chemical Society, 133, 1618–1621, 2011, http://dx.doi.org/10.1021/ja108228x.

Publication Link


93
Microchip Electrophoresis of N-Glycans on Serpentine Separation Channels with Asymmetrically Tapered Turns

Microchip Electrophoresis of N-Glycans on Serpentine Separation Channels with Asymmetrically Tapered Turns

Zhuang, I. Mitra, A. Hussein, M.V. Novotny, Y. Mechref, and S.C. Jacobson

Electrophoresis, 32, 246–253, 2011, http://dx.doi.org/10.1002/elps.201000461.

Publication Link


92
Microchannel-Nanopore Device for Bacterial Chemotaxis Assays

Microchannel-Nanopore Device for Bacterial Chemotaxis Assays

M.L. Kovarik, P.J.B. Brown, D.T. Kysela, C. Berne, A.C. Kinsella, Y.V. Brun, and S.C. Jacobson

Analytical Chemistry, 82, 9357–9364, 2010, http://dx.doi.org/10.1021/ac101977f.

Publication Link


91
Ion Transport in Nanofluidic Funnels

Ion Transport in Nanofluidic Funnels

J.M. Perry, K. Zhou, Z.D. Harms, and S.C. Jacobson

ACS Nano, 4, 3897–3902, 2010, http://dx.doi.org/10.1021/nn100692z.

Publication Link


90
H.-S. Chuang, S.C. Jacobson, and S.T. Wereley

H.-S. Chuang, S.C. Jacobson, and S.T. Wereley

A Diffusion-based Cyclic Particle Extractor

Microfluidics and Nanofluidics, 9, 743–753, 2010, http://dx.doi.org/10.1007/s10404-010-0589-0.

Publication Link


89
Effect of Conical Nanopore Diameter on Ion Current Rectification

Effect of Conical Nanopore Diameter on Ion Current Rectification

M.L. Kovarik, K. Zhou, and S.C. Jacobson

The Journal of Physical Chemistry B, 113, 15960–15966, 2009, http://dx.doi.org/10.1021/jp9076189.

Publication Link


88
Nanofluidics in Lab-on-a-Chip Devices

Nanofluidics in Lab-on-a-Chip Devices

M.L. Kovarik and S.C. Jacobson

Analytical Chemistry, 81, 7133–7140, 2009, http://dx.doi.org/10.1021/ac900614k.

Publication Link


87
Serial-to-Parallel Interfaces for Efficient Sample Transfer on Microfluidic Devices

Serial-to-Parallel Interfaces for Efficient Sample Transfer on Microfluidic Devices

Z. Zhuang and S.C. Jacobson

Analytical Chemistry, 81, 1477–1481, 2009, http://dx.doi.org/10.1021/ac801774p.

Publication Link


86
Water-assisted Femtosecond Laser Machining of Electrospray Nozzles on Glass Microfluidic Devices

Water-assisted Femtosecond Laser Machining of Electrospray Nozzles on Glass Microfluidic Devices

R. An, M.D. Hoffman, M.A. Donoghue, A.J. Hunt, and S.C. Jacobson

Optics Express, 16, 15206–15211, 2008, http://dx.doi.org/10.1364/OE.16.015206.

Publication Link


85
Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices

Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices

K. Zhou, M.L Kovarik, and S.C. Jacobson.

Journal of the American Chemical Society, 130, 8614–8616, 2008, http://dx.doi.org/10.1021/ja802692x.

Publication Link


84
Automatic Volume Management for Programmable Microfluidics

Automatic Volume Management for Programmable Microfluidics

A. Amin, M.S. Thottethodi, T.N. Vijaykumar, S.T. Wereley, and S.C. Jacobson

ACM Sigplan Notices, 56–67, 2008, http://dx.doi.org/10.1145/1375581.1375590.

Publication Link


83
Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection

Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection

O. Gustafsson, K.B. Mogensen, P.D. Ohlsson, Y. Liu, S.C. Jacobson, and J.P. Kutter

Journal of Micromechanics and Microengineering, 18, 055021, 2008, http://dx.doi.org/10.1088/0960-1317/18/5/055021.

Publication Link


82
Integrated Nanopore/Microchannel Devices for AC Electrokinetic Trapping of Particles

Integrated Nanopore/Microchannel Devices for AC Electrokinetic Trapping of Particles

M.L. Kovarik and S.C. Jacobson

Analytical Chemistry, 80, 657–664, 2008, http://dx.doi.org/10.1021/ac701759f.

Publication Link


81
Influence of Channel Position on Sample Confinement in Two-Dimensional Planar Microfluidic Devices

Influence of Channel Position on Sample Confinement in Two-Dimensional Planar Microfluidic Devices

M.A. Lerch, M.D. Hoffman, and S.C. Jacobson

Lab on a Chip, 8, 316–322, 2008, http://dx.doi.org/10.1039/b713500a.

Publication Link


80
Compact Microfluidic Structures for Generating Spatial and Temporal Gradients

Compact Microfluidic Structures for Generating Spatial and Temporal Gradients

D. Amarie, J.A. Glazier, and S.C. Jacobson

Analytical Chemistry, 79, 9471–9477, 2007, http://dx.doi.org/10.1021/ac0714967.

Publication Link


79
Electrokinetic Fluid Control in Two-Dimensional Planar Microfluidic Devices

Electrokinetic Fluid Control in Two-Dimensional Planar Microfluidic Devices

M.A. Lerch and S.C. Jacobson

Analytical Chemistry, 79, 7485–7491, 2007, http://dx.doi.org/10.1021/ac071003y.

Publication Link


78
Electrophoretic Analysis of N-Glycans on Microfluidic Devices

Electrophoretic Analysis of N-Glycans on Microfluidic Devices

Z. Zhuang, J.A. Starkey, Y. Mechref, M.V. Novotny, and S.C. Jacobson

Analytical Chemistry, 79, 7170–7175, 2007, http://dx.doi.org/10.1021/ac071261v.

Publication Link


77
AquaCore: A Programmable Architecture for Microfluidics

AquaCore: A Programmable Architecture for Microfluidics

A. Amin, M.S. Thottethodi, T.N. Vijaykumar, S.T. Wereley, and S.C. Jacobson

Proceedings of the 34th International Symposium on Computer Architecture, 34, 254–265, 2007, http://dx.doi.org/10.1145/1250662.1250694.

Publication Link


76
Attoliter-Scale Dispensing in Nanofluidic Channels

Attoliter-Scale Dispensing in Nanofluidic Channels

M.L. Kovarik and S.C. Jacobson

Analytical Chemistry, 79, 1655–1660, 2007, http://dx.doi.org/10.1021/ac061814m.

Publication Link


75
Fabrication of Three-Dimensional Micro- and Nanoscale Features with Single-Exposure Photolithography

Fabrication of Three-Dimensional Micro- and Nanoscale Features with Single-Exposure Photolithography

M.L. Kovarik and S.C. Jacobson.

Analytical Chemistry, 78, 5214–5217, 2006, http://dx.doi.org/10.1021/ac0604540.

Publication Link


74
Chemotaxis Assays of Mouse Sperm on Microfluidic Devices

Chemotaxis Assays of Mouse Sperm on Microfluidic Devices

S. Koyama, D. Amarie, H.A. Soini, M.V. Novotny, and S.C. Jacobson.

Analytical Chemistry, 78, 3354–3359, 2006, http://dx.doi.org/10.1021/ac052087i.

Publication Link


73
Three-Dimensional Mapping of the Light Intensity Transmitted through Nanoapertures

Three-Dimensional Mapping of the Light Intensity Transmitted through Nanoapertures

D. Amarie, N.D. Rawlinson, W.L. Schaich, B. Dragnea, and S.C. Jacobson

Nano Letters, 5, 1227–1230, 2005, http://dx.doi.org/10.1021/nl050891e.

Publication Link


72
Stacking due to Ionic Transport Number Mismatch during Sample Sweeping on Microchips

Stacking due to Ionic Transport Number Mismatch during Sample Sweeping on Microchips

Y. Liu, R.S. Foote, S.C. Jacobson, and J.M. Ramsey

Lab on a Chip, 5, 457–465, 2005, http://dx.doi.org/10.1039/b416414h.

Publication Link


71
Static and Dynamic Acute Cytotoxicity Assays on Microfluidic Devices

Static and Dynamic Acute Cytotoxicity Assays on Microfluidic Devices

C.R. Poulsen, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 77, 667–672, 2005, http://dx.doi.org/10.1021/ac049279i.

Publication Link


70
Preconcentration of Proteins on Microfluidic Devices using Porous Silica Membranes

Preconcentration of Proteins on Microfluidic Devices using Porous Silica Membranes

R.S. Foote, J. Khandurina, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 77, 57–63, 2005, http://dx.doi.org/10.1021/ac049136w.

Publication Link


69
Strategy for Repetitive Pinched Injections on a Microfluidic Device

Strategy for Repetitive Pinched Injections on a Microfluidic Device

C.D. Thomas, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 76, 6053–6057, 2004, http://dx.doi.org/10.1021/ac035475y.

Publication Link


68
Optical Trapping with Integrated Near-Field Apertures

Optical Trapping with Integrated Near-Field Apertures

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S.C. Jacobson, W.L. Schaich, and B. Dragnea

The Journal of Physical Chemistry B, 108, 13607–13612, 2004, http://dx.doi.org/10.1021/jp048028a.

Publication Link


67
Microfluidic Devices for the High Throughput Chemical Analysis of Cells

Microfluidic Devices for the High Throughput Chemical Analysis of Cells

M.A. McClain, C.T. Culbertson, S.C. Jacobson, N.L. Allbritton, C.E. Sims, and J.M. Ramsey

Analytical Chemistry, 75, 5646–5655, 2003, http://dx.doi.org/10.1021/ac0346510.

Publication Link


66
Effects of Microfabrication Processing on the Electrochemistry of Carbon Nanofiber Electrodes

Effects of Microfabrication Processing on the Electrochemistry of Carbon Nanofiber Electrodes

T.E. McKnight, A.V. Melechko, M.A. Guillorn, V.I. Merkulov, M. Doktycz, C.T. Culbertson, S.C. Jacobson, D.H. Lowndes, and M.L. Simpson

The Journal of Physical Chemistry B, 107, 10722–10728, 2003, http://dx.doi.org/10.1021/jp034872+.

Publication Link


65
High Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices

High Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices

J.D. Ramsey, S.C. Jacobson, C.T. Culbertson, and J.M. Ramsey

Analytical Chemistry, 75, 3758–3764, 2003, http://dx.doi.org/10.1021/ac0264574.

Publication Link


64
Electrohydrodynamic Mixing in Microchannels

Electrohydrodynamic Mixing in Microchannels

C. Tsouris, C.T. Culbertson, D.W. DePaoli, S.C. Jacobson, V.F. de Almeida, and J.M. Ramsey

AIChE Journal, 49, 2181–2186, 2003, http://dx.doi.org/10.1002/aic.690490825.

Publication Link


63
Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices

Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices

B.S. Broyles, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 75, 2761–2767, 2003, http://dx.doi.org/10.1021/ac025503x.

Publication Link


62
Diffusion Coefficient Measurements Using Microfluidic Devices

Diffusion Coefficient Measurements Using Microfluidic Devices

C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Talanta, 56, 365–373, 2002, http://dx.doi.org/10.1016/S0039-9140(01)00602-6.

Publication Link


61
Flow Cytometry of Esherichia coli on Microfluidic Devices.

Flow Cytometry of Esherichia coli on Microfluidic Devices.

M.A. McClain, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 73, 5334–5338, 2001, http://dx.doi.org/10.1021/ac010504v.

Publication Link


60
Electroosmotically Induced Hydraulic Pumping with Integrated Electrodes on Microfluidic Devices

Electroosmotically Induced Hydraulic Pumping with Integrated Electrodes on Microfluidic Devices

T.E. McKnight, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 73, 4045–4049, 2001, http://dx.doi.org/10.1021/ac010048a.

Publication Link


59
Two-Dimensional Electrochromatography/Capillary Electrophoresis Microchip Device

Two-Dimensional Electrochromatography/Capillary Electrophoresis Microchip Device

N. Gottschlich, S.C. Jacobson, C.T. Culbertson, and J.M. Ramsey

Analytical Chemistry, 73, 2669–2674, 2001, http://dx.doi.org/10.1021/ac001019n.

Publication Link


58
Electrophoretic Injection Bias in Microchip Valving

Electrophoretic Injection Bias in Microchip Valving

J.P. Alarie, S.C. Jacobson, and J.M. Ramsey

Electrophoresis, 22, 312–317, 2001, http://dx.doi.org/10.1002/1522-2683(200101)22:2<312::AID-ELPS312>3.0.CO;2-3.

Publication Link


57
Microchip Devices for High Efficiency Separations

Microchip Devices for High Efficiency Separations

C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 72, 5814–5819, 2000, http://dx.doi.org/10.1021/ac0006268.

Publication Link


56
Electrophoretic Separation of Proteins on a Microchip with Noncovalent, Postcolumn Labeling

Electrophoretic Separation of Proteins on a Microchip with Noncovalent, Postcolumn Labeling

Y. Liu, R.S. Foote, S.C. Jacobson, R.S. Ramsey, and J.M. Ramsey

Analytical Chemistry, 72, 4608–4613, 2000, http://dx.doi.org/10.1021/ac000625f.

Publication Link


55
Electrophoretic Separation of Proteins on Microchips

Electrophoretic Separation of Proteins on Microchips

Y. Liu, R.S. Foote, C.T. Culbertson, S.C. Jacobson, R.S. Ramsey, and J.M. Ramsey

Journal of Microcolumn Separations, 12, 407–411, 2000, http://dx.doi.org/10.1002/1520-667X(2000)12:7<407::AID-MCS4>3.0.CO;2-C.

Publication Link


54
Novel Microfabricated Device for Electrokinetically Induced Pressure Flow and Electrospray Ionization Mass Spectrometry

Novel Microfabricated Device for Electrokinetically Induced Pressure Flow and Electrospray Ionization Mass Spectrometry

I.M. Lazar, R.S. Ramsey, S.C. Jacobson, R.S. Foote, and J.M. Ramsey

Journal of Chromatography A, 892, 195–201, 2000, http://dx.doi.org/10.1016/S0021-9673(00)00335-6.

Publication Link


53
Integrated Microchip-Device for the Digestion, Separation, and Postcolumn Labeling of Proteins and Peptides

Integrated Microchip-Device for the Digestion, Separation, and Postcolumn Labeling of Proteins and Peptides

Gottschlich, C.T. Culbertson, T.E. McKnight, S.C. Jacobson, and J.M. Ramsey

Journal of Chromatography B, 745, 243–249, 2000, http://dx.doi.org/10.1016/S0378-4347(00)00287-5.

Publication Link


52
Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices

Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices

J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey

Analytical Chemistry, 72, 2995–3000, 2000, http://dx.doi.org/10.1021/ac991471a.

Publication Link


51
Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices

Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices

S.V. Ermakov, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 72, 3512–3517, 2000, http://dx.doi.org/10.1021/ac991474n.

Publication Link


50
Polymer Microparticle Arrays from Electrodynamically Focused Microdroplet Streams

Polymer Microparticle Arrays from Electrodynamically Focused Microdroplet Streams

K.C. Ng, J.V. Ford, S.C. Jacobson, J.M. Ramsey, and M.D. Barnes

Review of Scientific Instruments, 71, 2497–2499, 2000, http://dx.doi.org/10.1063/1.1150642.

Publication Link


49
Characterization of Cellular Optoporation with Distance

Characterization of Cellular Optoporation with Distance

J.S. Soughayer, T. Krasieva, S.C. Jacobson, J.M. Ramsey, B.J. Tromberg, and N.L. Allbritton

Analytical Chemistry, 72, 1342–1347, 2000, http://dx.doi.org/10.1021/ac990982u.

Publication Link


48
PCR Amplification and Analysis of Simple Sequence Length Polymorphisms in Mouse DNA Using a Single Microchip Device

PCR Amplification and Analysis of Simple Sequence Length Polymorphisms in Mouse DNA Using a Single Microchip Device

W.C. Dunn, S.C. Jacobson, L.C. Waters, N. Kroutchinina, J. Khandurina, R. S. Foote, M.J. Justice, L.J. Stubbs, and J.M. Ramsey

Analytical Biochemistry, 277, 157–160, 2000, http://dx.doi.org/10.1006/abio.1999.4397.

Publication Link


47
Effects of the Electric Field Distribution on Microchip Valving Performance

Effects of the Electric Field Distribution on Microchip Valving Performance

J.P. Alarie, S.C. Jacobson, C.T. Culbertson, and J.M. Ramsey

Electrophoresis, 21, 100–106, 2000, http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<100::AID-ELPS100>3.0.CO;2-P.

Publication Link


46
Solid Phase Extraction on Microfluidic Devices

Solid Phase Extraction on Microfluidic Devices

J.P. Kutter, S.C. Jacobson, and J.M. Ramsey

Journal of Microcolumn Separations, 12, 93–97, 2000, http://dx.doi.org/10.1002/(SICI)1520-667X(2000)12:2<93::AID-MCS5>3.0.CO;2-P.

Publication Link


45
Microfluidic Assays of Acetylcholinesterase Inhibitors

Microfluidic Assays of Acetylcholinesterase Inhibitors

A.G. Hadd, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 71, 5206–5212, 1999, http://dx.doi.org/10.1021/ac990591f.

Publication Link


44
Ultrasensitive Cross-Correlation Electrophoresis on Microchip Devices

Ultrasensitive Cross-Correlation Electrophoresis on Microchip Devices

J.C. Fister, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 71, 4460–4464, 1999, http://dx.doi.org/10.1021/ac990853d.

Publication Link


43
Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing

Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing

S.C. Jacobson, T.E. McKnight, and J.M. Ramsey

Analytical Chemistry, 71, 4455–4459, 1999, http://dx.doi.org/10.1021/ac990576a.

Publication Link


42
Microchip Flow Cytometry Using Electrokinetic Focusing

Microchip Flow Cytometry Using Electrokinetic Focusing

D.P. Schrum, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 71, 4173–4177, 1999, http://dx.doi.org/10.1021/ac990372u.

Publication Link


41
Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices

Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices

S.C. Jacobson, S.V. Ermakov, and J.M. Ramsey

Analytical Chemistry, 71, 3273–3276, 1999, http://dx.doi.org/10.1021/ac990059s.

Publication Link


40
Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis

Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis

J. Khandurina, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey

Analytical Chemistry, 71, 1815–1819, 1999, http://dx.doi.org/10.1021/ac981161c.

Publication Link


39
Multiple Sample PCR Amplification and Electrophoretic Analysis on a Microchip

Multiple Sample PCR Amplification and Electrophoretic Analysis on a Microchip

L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, and J.M. Ramsey

Analytical Chemistry, 70, 5172–5176, 1998, http://dx.doi.org/10.1021/ac980447e.

Publication Link


38
Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures

Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures

S.V. Ermakov, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 70, 4494–4504, 1998, http://dx.doi.org/10.1021/ac980551w.

Publication Link


37
Dispersion Sources for Compact Geometries on Microchips

Dispersion Sources for Compact Geometries on Microchips

C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 70, 3781–3789, 1998, http://dx.doi.org/10.1021/ac9804487.

Publication Link


36
Microchip Structures for Submillisecond Electrophoresis

Microchip Structures for Submillisecond Electrophoresis

S.C. Jacobson, C.T. Culbertson, J.E. Daler, and J.M. Ramsey

Analytical Chemistry, 70, 3476–3480, 1998, http://dx.doi.org/10.1021/ac980349t.

Publication Link


35
Solvent-Programmed Microchip Open-Channel Electrochromatography

Solvent-Programmed Microchip Open-Channel Electrochromatography

J.P. Kutter, S.C. Jacobson, N. Matsubara, and J.M. Ramsey

Analytical Chemistry, 70, 3291–3297, 1998, http://dx.doi.org/10.1021/ac971367y.

Publication Link


34
Degenerate Oligonucleotide Primed-Polymerase Chain Reaction and Capillary Electrophoretic Analysis of Human DNA on Microchip-Based Devices

Degenerate Oligonucleotide Primed-Polymerase Chain Reaction and Capillary Electrophoretic Analysis of Human DNA on Microchip-Based Devices

J. Cheng, L.C. Waters, P. Fortina, G. Hvichia, S.C. Jacobson, J.M. Ramsey, L.J. Kricka, and P. Wilding

Analytical Biochemistry, 257, 101–106, 1998, http://dx.doi.org/10.1006/abio.1997.2531.

Publication Link


33
Determination of Metal Cations in Microchip Electrophoresis Using On-Chip Complexation and Sample Stacking

Determination of Metal Cations in Microchip Electrophoresis Using On-Chip Complexation and Sample Stacking

J.P. Kutter, R.S. Ramsey, S.C. Jacobson, and J.M. Ramsey

Journal of Microcolumn Separations, 10, 313–319, 1998, http://dx.doi.org/10.1002/(SICI)1520-667X(1998)10:4<313::AID-MCS1>3.0.CO;2-J.

Publication Link


32
Counting Single-Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices

Counting Single-Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices

J.C. Fister, S.C. Jacobson, L.M. Davis, and J.M. Ramsey

Analytical Chemistry, 70, 431–437, 1998, http://dx.doi.org/10.1021/ac9707242.

Publication Link


31
Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing

Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing

L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, and J.M. Ramsey

Analytical Chemistry, 70, 158–162, 1998, http://dx.doi.org/10.1021/ac970642d.

Publication Link


30
Integrated Microchip Device with Electrokinetically Controlled Solvent Mixing for Isocratic and Gradient Elution in Micellar Electrokinetic Chromatography

Integrated Microchip Device with Electrokinetically Controlled Solvent Mixing for Isocratic and Gradient Elution in Micellar Electrokinetic Chromatography

J.P. Kutter, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 69, 5165–5171, 1997, http://dx.doi.org/10.1021/ac970723+.

Publication Link


29
Microchip Device for Performing Enzyme Assays

Microchip Device for Performing Enzyme Assays

A.G. Hadd, D.E. Raymond, J.W. Halliwell, S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 69, 3407–3412, 1997, http://dx.doi.org/10.1021/ac970192p.

Publication Link


28
Low Temperature Bonding for Microfabrication of Chemical Analysis Devices

Low Temperature Bonding for Microfabrication of Chemical Analysis Devices

H.Y. Wang, R.S. Foote, S.C. Jacobson, J.H. Schneibel, and J.M. Ramsey

Sensors and Actuators B, 45, 199–207, 1997, http://dx.doi.org/10.1016/S0925-4005(97)00294-3.

Publication Link


27
Electrokinetic Focusing on Microfabricated Channel Structures

Electrokinetic Focusing on Microfabricated Channel Structures

S.C. Jacobson and J.M. Ramsey

Analytical Chemistry, 69, 3212–3217, 1997, http://dx.doi.org/10.1021/ac961093z.

Publication Link


26
Integrated Microdevice for DNA Restriction Fragment Analysis

Integrated Microdevice for DNA Restriction Fragment Analysis

S.C. Jacobson and J.M. Ramsey

Analytical Chemistry, 68, 720–723, 1996, http://dx.doi.org/10.1021/ac951230c.

Publication Link


25
Microchip Electrophoresis with Sample Stacking

Microchip Electrophoresis with Sample Stacking

S.C. Jacobson and J.M. Ramsey

Electrophoresis, 16, 481–486, 1995, http://dx.doi.org/10.1002/elps.1150160179.

Publication Link


24
Microchip Separations of Neutral Species Via Micellar Electrokinetic Capillary Chromatography

Microchip Separations of Neutral Species Via Micellar Electrokinetic Capillary Chromatography

A.W. Moore, Jr.,  S.C. Jacobson, and J.M. Ramsey

Analytical Chemistry, 67, 4184–4189, 1995, http://dx.doi.org/10.1021/ac00118a023.

Publication Link


23
Microfabricated Chemical Measurement Systems

Microfabricated Chemical Measurement Systems

J.M. Ramsey, S.C. Jacobson, and M.R. Knapp

Nature Medicine, 1, 1093–1096, 1995, http://dx.doi.org/10.1038/nm1095-1093.

Publication Link


22
Fused Quartz Substrates for Microchip Electrophoresis

Fused Quartz Substrates for Microchip Electrophoresis

S.C. Jacobson, A.W. Moore, Jr., and J.M. Ramsey

Analytical Chemistry, 67, 2059–2063, 1995, http://dx.doi.org/10.1021/ac00109a026.

Publication Link


21
Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip

Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip

S.C. Jacobson, R. Hergenröder, A.W. Moore, Jr., and J.M. Ramsey

Analytical Chemistry, 66, 4127–4132, 1994, http://dx.doi.org/10.1021/ac00095a003.

Publication Link


20
Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor

Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor

S.C. Jacobson, L.B. Koutny, R. Hergenröder, A.W. Moore, Jr., and J.M. Ramsey

Analytical Chemistry, 66, 3472–3476, 1994, http://dx.doi.org/10.1021/ac00092a027.

Publication Link


19
Open Channel Electrochromatography on a Microchip

Open Channel Electrochromatography on a Microchip

S.C. Jacobson, R. Hergenröder, L.B. Koutny, and J.M. Ramsey

Analytical Chemistry, 66, 2369–2373, 1994, http://dx.doi.org/10.1021/ac00086a024.

Publication Link


18
High-Speed Separations on a Microchip

High-Speed Separations on a Microchip

S.C. Jacobson, R. Hergenröder, L.B. Koutny, and J.M. Ramsey

Analytical Chemistry, 66, 1114–1118, 1994, http://dx.doi.org/10.1021/ac00079a029.

Publication Link


17
Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices

Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices

S.C. Jacobson, R. Hergenröder, L.B. Koutny, R.J. Warmack, and J.M. Ramsey

Analytical Chemistry, 66, 1107–1113, 1994, http://dx.doi.org/10.1021/ac00079a028.

Publication Link


16
Estimation of the Number of Enantioselective Sites of Bovine Serum Albumin Using Frontal Chromatography

Estimation of the Number of Enantioselective Sites of Bovine Serum Albumin Using Frontal Chromatography

S.C. Jacobson, S. Andersson, S. Allenmark, and G. Guiochon

Chirality, 5, 513–515, 1993, http://dx.doi.org/10.1002/chir.530050707.

Publication Link


15
Study of Band Broadening in Enantioselective Separations Using Microcrystalline Cellulose Triacetate: II. Frontal Analysis

Study of Band Broadening in Enantioselective Separations Using Microcrystalline Cellulose Triacetate: II. Frontal Analysis

A. Seidel-Morgenstern, S.C. Jacobson, and G. Guiochon

Journal of Chromatography, 637, 19–28, 1993, http://dx.doi.org/10.1016/0021-9673(93)83094-9.

Publication Link


14
Study of Band Broadening in Enantioselective Separations Using Microcrystalline Cellulose Triacetate:  I. The Linear Case.

Study of Band Broadening in Enantioselective Separations Using Microcrystalline Cellulose Triacetate:  I. The Linear Case.

S.C. Jacobson, A. Seidel-Morgenstern, and G. Guiochon.

Journal of Chromatography, 637, 13–18, 1993, http://dx.doi.org/10.1016/0021-9673(93)83093-8.

Publication Link


13
Modeling of the Adsorption Behavior and the Chromatographic Band Profiles of Enantiomers: Behavior of Methyl Mandelate on Immobilized Cellulose

Modeling of the Adsorption Behavior and the Chromatographic Band Profiles of Enantiomers: Behavior of Methyl Mandelate on Immobilized Cellulose

F. Charton, S.C. Jacobson, and G. Guiochon

Journal of Chromatography, 630, 21–35, 1993, https://doi.org/10.1016/0021-9673(93)80439-F.

Publication Link


12
Optimizing the Sample Size and the Retention Parameters to Achieve Maximum Production Rates for Enantiomers in Chiral Chromatography

Optimizing the Sample Size and the Retention Parameters to Achieve Maximum Production Rates for Enantiomers in Chiral Chromatography

S.C. Jacobson, A. Felinger, and G. Guiochon

Biotechnology and Bioengineering, 40, 1210–1217, 1992, http://dx.doi.org/10.1002/bit.260401011.

Publication Link


11
Optimizing the Sample Size and the Reduced Velocity to Achieve Maximum Production Rates for Enantiomers

Optimizing the Sample Size and the Reduced Velocity to Achieve Maximum Production Rates for Enantiomers

S.C. Jacobson, A. Felinger, and G. Guiochon

Biotechnology Progress, 8, 533–539, 1992, http://dx.doi.org/10.1021/bp00018a010.

Publication Link


10
Prediction of High Concentration Band Profiles in Liquid Chromatography

Prediction of High Concentration Band Profiles in Liquid Chromatography

A.M. Katti, M. Diack, M.Z. El Fallah, S. Golshan-Shirazi, S.C. Jacobson, A. Seidel-Morgenstern, and G. Guiochon

Accounts of Chemical Research, 25, 366–374, 1992, http://dx.doi.org/10.1021/ar00020a007.

Publication Link


9
Enantiomeric Separations Using Bovine Serum Albumin Immobilized on Ion Exchange Stationary Phases

Enantiomeric Separations Using Bovine Serum Albumin Immobilized on Ion Exchange Stationary Phases

S.C. Jacobson and G. Guiochon

Analytical Chemistry, 64, 1496–1498, 1992, http://dx.doi.org/10.1021/ac00037a032.

Publication Link


8
Contribution of Ionically Immobilized Bovine Serum Albumin to the Retention of Enantiomers

Contribution of Ionically Immobilized Bovine Serum Albumin to the Retention of Enantiomers

S.C. Jacobson and G. Guiochon

Journal of Chromatography, 600, 37–42, 1992, http://dx.doi.org/10.1016/0021-9673(92)85434-U.

Publication Link


7
Experimental Study of the Production Rate of Pure Enantiomers from Racemic Mixtures

Experimental Study of the Production Rate of Pure Enantiomers from Racemic Mixtures

S.C. Jacobson and G. Guiochon

Journal of Chromatography, 590, 119–126, 1992, http://dx.doi.org/10.1016/0021-9673(92)87012-W.

Publication Link


6
Isotherm Selection for Band Profile Simulations in Preparative Chromatography

Isotherm Selection for Band Profile Simulations in Preparative Chromatography

S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon

AIChE Journal, 37, 836–844, 1991, http://dx.doi.org/10.1002/aic.690370606.

Publication Link


5
Determination of Isotherms from Chromatographic Peak Shapes

Determination of Isotherms from Chromatographic Peak Shapes

E.V. Dose, S.C. Jacobson, and G. Guiochon

Analytical Chemistry, 63, 833–839, 1991, http://dx.doi.org/10.1021/ac00008a020.

Publication Link


4
Influence of the Mobile Phase Composition on the Adsorption Isotherms of an Amino-Acid Derivative on Immobilized Bovine Serum Albumin

Influence of the Mobile Phase Composition on the Adsorption Isotherms of an Amino-Acid Derivative on Immobilized Bovine Serum Albumin

S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon

Chromatographia, 31, 323–328, 1991, http://dx.doi.org/10.1007/BF02262186.

Publication Link


3
Measurement of the Heats of Adsorption for Chiral Isomers on an Enantioselective Stationary Phase

Measurement of the Heats of Adsorption for Chiral Isomers on an Enantioselective Stationary Phase

S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon

Journal of Chromatography, 522, 23–36, 1990, http://dx.doi.org/10.1016/0021-9673(90)85174-T.

Publication Link


2
Chromatographic Band Profiles and Band Separation of Optical Isomers at High Concentration

Chromatographic Band Profiles and Band Separation of Optical Isomers at High Concentration

S.C. Jacobson, S. Golshan-Shirazi, and G. Guiochon

Journal of the American Chemical Society, 112, 6492–6498, 1990, http://dx.doi.org/10.1021/ja00174a007.

Publication Link


1
Theoretical Study of Multi-Component Interferences in Non-Linear Chromatography

Theoretical Study of Multi-Component Interferences in Non-Linear Chromatography

S.C. Jacobson, S. Golshan-Shirazi, A. Katti, Z. Ma, M. Czok, and G. Guiochon

Journal of Chromatography, 484, 103–124, 1989, http://dx.doi.org/10.1016/S0021-9673(01)88964-0.

Publication Link